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f[e £ Fror
S In this paper, one of a scries on verification of concurrent programs, e present proof methods
for establishing eventuality and until properties. The methods are based on well-founded ranking
and arc applicable to botlr’“just"qyand x‘fair“’éomputations. These methods do not assume a
decrcase of the rank at cach compulation step. It is suflicient that there exists one process which
decreases the rank when activated. Fairness then ensures that the program will eventually attain
its goal. '
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In the finite state case the proofs can be represented by diagrams. Several examples are given.
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INTRODUCTION

In a previous report [MP1] we introduced the temporal framework for rcasoning about pro-
grams. We described a model of concurrent programs which is based on interaction via shared
variables and defined the concept of fair execution of such programs. We then demonstrated the
application of temporal logic formalism for ezpressing propertics of concurrent programs. Program
properties can be classified according to the syntactic form of the temporal formula expressing
them; we studied Lhree classes of properties: invariance propertiies, eventuality properties and
precedence (“until”) properties. Most program properties that have been previously considered or
studied for sequential and concurrent programs fall into one of these threc categories.

In a second report [MP2], we developed proof principles based on temporal logic for establishing
that concurrent programs possess properties of these classes. We presented a proof method for
each class of properties.

e A single invariance principle is adequate for establishing invariance properties.

o For proving cventuality properties, we recommended a chain reasoning approach, in
which we follow the possible chains of events until the desired goal is realized. Several
proof principles were introduced for establishing the basic steps in the chain. A similar
approach is presented in [OL).

e Simple precedence properties may be proved by a combination of invariance proofs and
eventuality proofs. A forthcoming report ([MP3]) will discuss proof methods for general
precedence propcrties.

In this paper, we present an alternative method for proving eventuality and “until” properties
based on convergence functions (well-founded rankings).

In our exposition, we assume that the reader is familiar with the basic concepts and delinitions
introduced in [MP1] and [MP2].

THE CONVERGENCE FUNCTION APPROACH

Unlike the chain reasoning approach, which displays a variety of strategies and rules, the
convergence function approach provides a single uniform principle for proving eventualities of the
form:

koD OY,
(s.e., if © ever ariscs it must be followed by ), as well as “until” propertics of the form

R oD (xUY),

(i.e., if @ ever arises it must be followed by an instant at which 9 is realized and bectween the
occurrences of ¢ and ¥, x must hold continuously).

With respect to uniformity, the convergence function approach resembles the invariance
principle for proving invariance properties. Another common feature is thal establishing the
premiscs to the proof rule requires only static (non-temporal) reasoning.
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Convergence functions have been used successfully in prools of termination of sequential
programs and of rewriting systems (e.g., [M], [DM]). Their usec is based on a mapping from
the execution states of a program into a well-founded set, such that states which appear later
in a computation correspond to lower values in the set. Consequently, a complete computation
will correspond tc a descending sequence, and an infinite computation would correspond to an
infinitely descending scquence of well-founded elements, which is impossible. Such a mapping is
called a convergence function or a ranking function.

A well-founded structure (W, >) consists of a set W and a partial order > on W such that
any decreasing sequence wg > wy > wg > ..., Where w; € W is finite. A typical and frequently
used well-founded structure is (N, >), where N is the set of all nonnegative integers, and > is
the usual “greater than” ordering. Obviously we cannot have an infinitely decreasing sequence of
nonnegative integers, and therefore (N, >) is indeed a well-founded structure.

A general method for deriving composite well-founded structures from simpler ones is the
formation of lexicographical orderings. Let (Wy, > 1) and (W, >2) be two well-founded structures.
Then the structure given by (W; X W2, >(..) where the lexicographic ordering > ., is defined by

(my,mg) >iez (n1,m2) & (my >y 1) or (my =n; and ma >3 ng)

is also well-founded.

Let us consider the application of the classical convergence function approach to the following
concurrent program:

Ezample A (Program DGCD - distributed ged computation)

(y1,v2) == (21, 23)

lo: whiley, #~ ya do mg : while yy 7% ya3 do

f 1 > ya theny ' =y1 —¥3 f n <yathenyr:=ya—m
& : halt my : halt
— P — — P —

This program performs the distributed computation of the ged (greatest common divisor)
of two positive integers inputs z,,z2. In the execution of this program, we assume cach of the
labelled instructions to be atomic in the sense that testing and modification of the variables by one
process, say I’} at £y, arc completed before the other process may access them. Note that when
P, is activaled in a state in which y; < y2 it docs not modify any ol the variables and rcturns
lo £p, Lhus replicating exactly the original state. Consequently, the terminalion, and hence the
correclness of this program, depends very strongly on the basic assumption of fairness that we
assume throughout this work. Only undecr fairness would each of I, and Pz be activaled as often
as needed until convergence is achieved.

Trying to prove the convergence of this program by well-founded ranking immediately runs
into diflicullics when we lail to find a mapping into a well-founded set Lthat will decrease at every
step of the computation. No such function can exist for the above program since, as observed
carlier, some steps may preserve the state and leave Lhe value of a state-dependent convergence
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function constant. This points out emphalically that any well-founded argument may succeed only
il it takes fairness into account.

ALY Y

PROGRAMS AND COMPUTATIONS

O O

L R St

For complcteness we repeat some of the definitions of [MP1] and introduce some additional
notation required here. Let P be a program consisting of m parallel processes:

P: gi= fol@sPil... 1Pl

Each process P; may be represented as a transition graph with locations (nodes) labelled by elements
of L; = {8, ...,£6i}. The edges in the graph are labelled by guarded commands of the form
¢(¥) — [¥ := f(¥)] whose meaning is that if ¢(7) is true the edge may be traversed while replacing

¥ by f(9).
Let 4,2, ..., % € L; be locations in process P;:

ci(7) = 7 := N(7)] @

cex(y) = [ := Ji(¥)|
| ()

We define Eo(7) = c1(F) V ... V ci(¥) to be the ezit condition at node £. Locations in the
program can be classified according to their exit conditions.

o A location is regular if E, = true. This is the casc with locations such that the sct of
conditions labeling their outgoing transilions is exhaustive in the sense that for every
possible value of F at lcast one transition is enabled. The only irregular locations are
terminal locations and scmaphore locatlions discussed next.

o A location is termsnal if E, = false. This is the case with localions labeling halt
instructions which have no oulgoing transitions. In our model we usually label these
locations by £,.

o Any location ¢ such that the exit condition /2¢(¥) is nontrivial is called a semaphore loca-
tion. Examples of such localions arc those corresponding to the instruction request(y,)
whose transition diagram is:

N W >0) =y =y, 1]
O, O
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Note that Ey(y) = (y» > 0). The request instruction is used in order to reserve a
resource, where y, may be considered as counting the number of units of this resource
currently available. Its symmetric counterpart, the release(y,) instruction, is used to
relcase a reserved resource. Its transition diagram is:

true = [y, ;= 1y, +1
@ =S e O,

The release instruction has as its exit condition £, = true. Consequently its location
is a regular location.

A state of the program P is a tuple of the form s = (£7) with £ € L1 X ... X L -and
% € D™, where D is the domain over which the program variables yy, ..., yn range. The vector ¢
is the set of current locations which are next to be executed in cach of the processes. The vector
7 is the set of current values assumed by the program variables 7 at state s.

With each process P; we associate a state transition function g; that rcpresents the possible
outcomes of the activation of the process P’; on the state s. If we denote by S the sct of all possible
program states, g; is a function g; : § — 25.

Note that this definition allows for the possibility that P; is nondeterministic, since it is possible
that |gi(s)] > 1, i.e., there is more than one successor to s. Let s = (§%). If ¢4 is a terminal
location, or a semaphore location with Eq () =false, then P; cannot be activated on s. In such
a case g;(s) = ¢ and we say that P, is disabled on s. If ¢; is a regular location, or a semaphore
location with Eq (%) = true then gi(s) # ¢ and we say that P; is enabled on s.

A state s € S such that all processes are disabled on s is called terminal. A terminal state
corresponds cither to a situation in which all processes have terminated or Lo a deadlock in which
all the nonterminated processes wait in a semaphore location with a lalse exit condition.

e An admissible computation is a labelled (possibly infinite) sequence:

P P P
6: 8 —>8 —>8y —>83 ...

such that every s; € S and for every j > 0, we have 8;41 € g,,,(8;). Thus, such a
computation could arise by an exccution of the program starting from the initial state sq.
The computation will be finite only if it terminates in a terminal state s,. We can think
of such a computation as generated under the guidance of an imaginary scheduler which
at each step selects one of the processes (called the activated or scheduled process) and lets
it execute a single instruction.

o A f-inittfalized computation is an admissible computation in which sg = (l(‘,, R ,lg‘;fo(f)).
lere & is the initial location in process 1% and fp is the initial assignment Lo the program
variables.

o A E-computation is a E-initialized computation or a suffix of a -initialized computation.
Allowing suffixes of initialized computations cnables us to study program behavior which
may become observable only later in the computation.

o A p-computation is a €-computation for any input values € satisfying a precondition .

The next definition embodies the basic assumption of fairness:
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An admissible computalion ¢ is fasr il Lhere is no process I such that I is enabled an infinite
number of times in o, and P; is activated only finitely many times. Thus, fairness requires the
imaginary scheduler to monitor the number of times a process becomes cnabled, and to ensure that
repeatedly enabled ones are not neglected forever. Any finite computation is necessarily fair.

In the absence of secmaphore instructions, cach process P; is initially ecnabled and can become
disabled only by terminating. Hence we can define the weaker notion of just computation, which
replaces the requirement of being enabled an infinite number of times by the requirement of being
continuously enabled.

A computation o is just if there is no process F; such that P, is continuously enabled beyond
a certain state s in o, and P; is activated only finitely many times. Any finite computation is by
definition just.

We denote the classes of all fair and just computations of a program P with precondition ¢
by F(p, P), J(i, P) respectively, or F(P), J(P) when the precondition g is implicitly understood.

For an arbitrary program P we have in general
F(P) C J(P),
t.e., every fair computation is also just, but there may exist just computations which are unfair.

To see that the first claim holds, let o be a fair computation. Let P; be any process that is
continuously enabled beyond a certain state in 0. Thus, P is certainly enabled an infinite number
of times, and by fairness must be activated an infinite number of times. Hence o is just.

To show that the inclusion between the sets F(P) and J(P) may be strict consider the following
program which is the simplest program modelling mutual exclusion: '

y:=1
& : request(y) mg : request(y)
4 : releasely) m, : release(y)
: go toly my: go tomg
-P - -P -

The lollowing computation:
' Py P Py
o: (b, mg;1) —> (£, mg;0) —> (&g, mo;1) —>
Py Py
(%o, mo; 1) —> (&1, m0; 0) —> (L3, mo; 1) —> . ..

is just. The process P; is activated infinitely many times. On the other hand P’ is never
continuously enabled since it is disabled in the infinitely recurring state (£, mo; 0), thercfore justice
does not require it to be activated at all. Qbviously o is unfair since I’; is also enabled infinitely
many times on all recurrences of (£p, mo; 1), but is never activated.

However when P contains no semaphore instructions we may use the above observation that
a process is continuously enabled if and only if it is enabled infinitely many times, to conclude:

For a program without semaphores: F(P) = J(P).
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Thus, in order to study programs without semaphores, we need only consider properties thal hold
for the class of all just computations:

PROGRAMS WITIIOUT SEMAPHORES - JUST COMPUTATIONS

In this section we present a proofl principle enabling us to prove eventuality properties that
hol¢ for the class of just computations J(P).

The basic idca of the proof principle is to assign a convergence function u : S -+ W mapping
the program states into a well-founded structure W. However, as shown in examples such as the
DGCD program above, we should not require the function to decrease at every step. Instend we
require that the function never increases and ihat lor each state Lhere is always a process /%, viilled
the helpful process for this state, such that the activation of this process guarantees a decrease
in the value of the function. By justice this helpful process will eventually be scheduled, so that
any infinite just computation will necessarily generate an infinitely decreasing subsequence of well-
founded elements — a contradiction. In the general case, the identity of the helpful process may
vary from state to state. We therefore introduce a helpfulness function h : S — {1, ..., m} that
identifies onc helpful process P,y for each state s € S.

We suggest the following proof method for proving precedence and eventuality properties of
juet computations.

Proof Method J:

For proving eventualities of the form ¢ D O, under all just computations of a
program P, find a state predicate @ = Q(s), a well-founded structure (W, >), a
convergence function u : § — W and a helpfulness function h: S — {1, ...,m}
such that:

Ji. B oD (¥VQ)

J2. ® Q(s) O (gne)(s) # ¢)

J3. ® [Q(s) A s €gils)) > [B(s) vV (Qs") A (u(s) = u(s))] .
ort=1,...,m

Ji. ® [Q(s) A & € grg(8)] D [¥(s) V (u(s) > u(s')))

J5. B [Qs) A & €gils) A (u(s) =u(¢))] D [¥(s)) V (h(s) = h(s"))]

fori=1,...,m.
Then we may conclude that:

J(P)E o D O

Ierc B w means that w is true for all computations of P. The statement J(7°) B w means that w
is true for all just computations ol P.
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In these, Q(s) is an invariant which is expected to remain Lrue from the time ¢ becomes true
until ¢ is realized. Requirement J 1 states Lhat if ¢ holds for a state then cither % or @ must hold

in this state. J2 requires that the process that is helpful for a state s be enabled on s. J3 states )
that each step in the computation either realizes 9 or preserves @@ and produces a value of u that =
is not higher than the value before the step. J4 states that taking a helpful step actually decrzases 1
the value of u. Jb states that a step which does not decrease the value of u must prescrve the
identity of the helpful process. The last condition is necessary in order Lo avoid an infinite secquence N
with constant value of u and continuously changing h. Such a sequence may be just but yet avoid ’

realizing .

Proof:

:
!
i i

Let us justify this proof method by showing that if we succeed in finding @, W, u and h as
described above then indeed every just computation must satisfy ¢ O O 9.

Let us consider a just computation:
t.] !"

o.: 8y —> 8 —> 8 —> ...,

such that o(8¢) is true and ¥ is nowhere realized. By J1 and J3, Q(s;) must be truc for every s;
in the scquence. By J2 the sequence must be infinite since, for every s;, lh(, ) is enabled. Again
by J3 the scquence of u values u(sg) > u(s;) > ... must be a non-increasing sequence. By the
well-foundedness of W there must be a k such that

u(8k) = w(8k41) = ...

By J5, h also remains constant from s; on, that is
h(sk) = h(8k+1) = e

Let its constant value be r = h(s,). In view of J4, P, was never activated beyond s, because
its activation would have caused u to decrease. In view of J2, P, is continuously cnabled beyond
8k since everywhere h(s;) = r for ¢ > k. This is obviously a blatant case of injustice - P, being
continuously enabled and ncver activated. Thus, just sequences failing to realize ¥ cannot exist,
and any just sequence initialized with ¢ must eventually realize .

RS- VPPN

By looking at the proof for eventualities we observe that it guarantces the cventual realization
of ¥ and, by J1 and J3, as long as % is not realized, @ holds. This is exactly the definition of the
unlil expression Q U 9. We thercfore have: j

N T IR I - .
P S )

Corollary: The proof method J also proves
JP) £ p D (QUY).

The treatment in [L.PS] implies that this mcthod is also complete, namely that if ¢ D O 9 s b
true for all just computations of P> then there always exist some @, W, u, and h salisfying J1— J5.

_a

Related work dealing with similar methods for establishing fair termination, which is a special
case of eventuality, is contained in [GFMR|, [AO] and [Pa]. FEarlier work on the terminalion of
concurrent programs is described in [K], [Pn].

We will now procced to illustrate Lhe application of this method to proofs of cventuality
propcrlics of programs wilhout semaphores,

DO - S

i
:
\
]

elandhaingdetulhins st mniade M PP AL G P N RPN S U P I T SN ALl A A Al At an AT A At aialata . a




.

e s w @ el
PG PETRRRERE K.+

Y s . ¢

325208 00 "s

-
-
.
-
L
0
+
.

{ Sk

f
%

......................................................

A
o
1

L

L |

o

r
#

A
'1

4

y
4
e

Ezample A (Program DGCD - distribuled ged computation):

Consider again the DGCD program. Let ;

p: atly A atmg A (yhy2a)=(z1,22) A 21>0 A 22> 0 1

and | '
Y: atlyp A atmg A y = yz = ged(zy, z3). —.—11

We wish to prove
B o DO O,
i.e.,

J(P)E [atlo A atmg A (yl;y2)—(zlxzﬁ) Az >0 A 23>0
D Olatly A atmg A y1 =y = geuky, z2)].

That is, being at the starting point of the program with (y;,y2) = (21, z2) and positive inputs
z; > 0,22 > 0, we are guaranteed to cventually get back to that point with y, being the greatest
common divisor of z;, zs.

We choose @, W, u, and h as follows:

Q(s): atly A atmg A y1 >0 A y2 > 0 A ged(yr,y2) = ged(z1,22) A y1 # v2
W: (N, >) - the nonncgative integers with the “greater than” relation

w(y1,v2): v1+v2
h(ylyy2) : tify1 > y2 then Py else Py

We have intentionally displayed h as a function into {Py, P,} rather than {1, 2} to stress the fact
that it selects processes. It is not diflicult to verily that requircments J1 to J5 hold for this choice
of @,W,u, and h. In particular, we note that @ implies that when y; > y2, P; is helpflul in
decreasing y1 + y2 while for y; < y2 (by @ : y1 < y2) P2 is helpful. Note that once we are at
(€0, mg) with y; = y the program will immediately proceed to the termination state at (¢;,my).

AN INDEXING METTIOD FOR JUST COMPUTATIONS

A variant of the convergence function approach uscs clements of well-founded sets as indices Lo
predicates. As we will show below Lhe Lwo variants are essentially equivalent, bul certain problems
may admit proofs that arc easier to present in the indexed form than in the convergence funclion
form. As before, the method is bascd on finding a well-founded set (V, >). We then consider
predicates Ry(s) with v € V, 8 € § which are state predicates indexed by clements of V. States
appearing later in the computation will satisfy 12, with lower valucs of v. Convergence is therclore
assured by the impossibilily of having a sequence of f2,, with an infinitely decreasing values of ;.
Hlowever, as before we cannot guarantee a strict decrease on every step. We therefore specily a
decrease function 6 : V — {1, ..., m} which, similarly to the helpfulness funclion A, identifics the

BPET  TTAr
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helpful process P5(,) that corresponds to any state s satislying Ry(s). Note that Lhe identity of the
helpful or decreasing process depends only on the index v and not on the slate.

With this notation we now formulate the indexing method lor just computations.

Proof Method IJ:

For proving eventualitics of the form ¢ D © 14, under all just computations of a
program P, find a well-founded structure (V, >), an indexed family of predicates
R, = R,(8), v € V, and a decrease function § : V — {1, ..., m} such that:

IJ1. ® oD ¢ V (QveV.R)

1J2. ® Ry(s) D (gs)(8) # 9) |
1J3. ® [Ru(s) A &' €als)] O () V Fulu < v).Ru(s) fori=1,...,m
4. & [Ru(s) A & € gsy(s)] O () V Fulu < v).Ru(s")

Then we may conclude that
J(P)E o D O¥.
A stronger conclusion is:

JIP)E ¢ D (Fu.R,)U%.

Requirements IJ1-1J4 resemble very closely J1-J4 and fulfill similar roles. There is no need
for a counterpart to J5 since if s satisfies 2,(s), 8’ € g:(s) and also R,(s') then the decreasing
process for 8, being determined by v alone, is also the decreasing process for 8'. The proof method
IJ appeared first in a structured form, applicd to nondeterministic programs ([GFMR]).

The similarity between the methods suggest that they are in fact equivalent. Indeed we make
the following claim:

Method .J 13 applicable if and only if method IJ '~ applicable.

Proof:

Assume first that method J is applicable. This means that we have found @, (W, >), v and
h satisfying requirements J1 to J5. To show Lhat this implies the applicability of IJ we choose as
follows:

The well-founded structure (V, >vy) is given by V. = W X [I, ..., m], where
(wl,i) >v ('wg,j) & wy >w we or (w, =wy and 1 > ])

Thus, an element of V is a pair (w,1) with w € W and 1 < ¢ < m, and the ordering >y is the
lexicographic ordering induced by the ordering on W and on the natural numbers.

Riw,)(8) is defined by  Q(s) A [u(s) = w] A [A(s) =]
' 10
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and

§(w,i) = 1.

It is an easy matter to verily the lulfilment of requirements 1J1 to IJ4. Consider for example
the verification of condition 1.J3.

Let s, 8’ be two states such that Ry, ,)(s) holds and &’ € g;(s). By the definition of R we know
that Q(s) is true and u(s) = w, h(s) = j. By J3 either 9(s') is true which immediately satisfies
1J3, or Q(s') holds and w = u(s) > u(#') = w’. Thus, by the definition of R, R(u n(sy(s') is
true. It remains to show that (w, j) = (w, h(8)) > (w’, h(s’)). If w > w’ then this is certainly the
case. Consider therefore the possibility that w = w’. But then by J5 also h(s) = h(s') lcading to
(w, h(s)) = (w’, h(8’)) as required.

To go in the other direction assume that (V, >), R, and § as required for method IJ have
been found. We will show how to select @, (W, >), u and h that will satisfy the requirements of
method J.

For simplicity we assume that the order > is a total (linear) order. We may then take the
well-founded structure (V, >) to be (W, >). Q(s) is defined by 3v.R,(s) and u(s) is given by
min{v|R,(s)} for an s which satisfics @ and arbitrarily otherwise. If W is a total well-founded
order cvery non empty subset of W has a minimal element which is smaller than any other element
of the set. The helpful function h(s) is defined as 6(u(s)).

It is an easy matter to verify that @, u, and h satisfy requirements J1 to J5. @

DIAGRAM REPRESENTATION OF THE INDEXING METHOD

In the case that the indexing set V' is finite therc is a convenient graph representation of the
indexing method. This is certainly the case when the program P has only finitely many possible
states.

In the graph or diagram representation there is a node n, for each R,,v € V. Without loss of
gencrality we may assume V to be an initial scgment of the natural numbers V = {1,2, ..., k}.
Thus we have nodes n;, i = 1, ..., k. A special node ng, represents 3. For every s € Ry, 8’ € R;
(i.e. Ri(8) = R;(¢') = true) such that s’ € gy(s), we draw an cdge e from n; to nj. The cdge e is
labelled by F%, the process cffecting the transition. Similarly, for every s € R;, 8’ € 9 such that
8’ € g¢(3) we draw an edge from n,; to ng and label it by Pp.

In order for a diagram to represent a valid proof by method 1J the following conditions must
hold:

A. For every cdge connecting n; to n; we must have ¢ > j.

B. For every mn,, £ > 0, there must exist some P, (the helpful process) such that all
edges labelled by Pg lead from n; to some n; with ¢ > j and such that P, is
enabled on all states s € R;.

In the diagram we represent edges corresponding to the helpful process by double arrows =,

We illustrate diagram proofs by two additional examples.

11
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Ezample B (The Peterson-Fischer Algo.wum (PF) — a distributed solution of the mutual exclusion
problem):

Y1 = t = Y3 = tg := L

£y : noncritical section1  « myg : noncritical section 2
8: t1y:=tfya=F thenF else T my: tg:=4f yy =T thenF elseT
L: y=1 mg: ya:=13
&: ifys # L thent) :=yg m3: ify; 7# L thenty := -y,
L: n=t . my: y2:=1¢
Ly : loop whiley; = y2 ms : loop while -~y =y

critical section 1 critical section 2

(y1,t1) := (L, 1) (y2,t2) := (L, 1)

ly: gotoly : my: go tomg
-P, — —-Py -

This program provides a distributed solution for achieving mutual exclusion without sema-
phores; the boxed segments are the critical sections to which we wish to provide exclusive access.
It is assumed that both critical and noncritical sections do not modify the variables y; and ys.
Also, it is mandatory that the critical section itself must terminate. The program is distributed in
the sensc that each process P; has its own memory y; which is readable by the other but writable
only by itself.

The basic idea of the protéction mechanism of this program is that when competing for the
access rights to their critical sections, P, altempts to make y; = ya by the statements ¢, to ¢,
while Py attempts to make y3 = -y, in statements m, to m,. The synchronization variables y,
and y; range over the set {1, F, T}, where L signifies no interest in entering the critical section.
The partial operator - is defined by

-T=F, -F=T, -.1 isundefined.

Hence in writing ~ya = y, we also imply that y; 7 L and y2 7 1. Protection is assured
essentially by the exclusion of the entry conditions y; 7 y2 and -y2 ¢ y; when both y; and y2
are different from L, since y; 7% L when P; is waiting to enter its critical section.

A point unique to this algorithm is that although P, attempts to eslablish the condition y, =
y2 in {; to {4, the condition for P; actually entering the critical section is the complementary
condition y; 7 ya. Thus, il both processes actively compele for entry, P; sects y; cqual to y;
and then waits for the other process to sct y3 to a value different from y,. If P is not currently
interested in gaining access to the crilical scction, then y3 = L which will cause the statements
in ¢ to ¢, to set y, to T'; testing at ¢5, /’, will find that indeed yy = T £ y3 = L and cnter
immediately. :

By simple application of the invariance principle it is possible to derive the following invariants:

[ ] (tl#_l.) = atly ¢
B (1 # L) = atly g
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B (t27# 1) = atmgg
P (ya# L) = atmg,
where atly g stands for atls V atlz Vv ... V atls, cte.
The eventuality property we wish to silow for this program is
kR atl; DO Oatl.

In Figure 1 we present a diagram proofl for this property. In constructing the diagram we have
freely used the four invariants derived above. Observe in particular node number 6

6: &,mg . .

in which the helpful process (indicated by a double arrow =) is Py since we know that y3 = L.
In this diagram we abbreviate at5 A atmg to &5, mq.

To illustrate the application of method IJ to the proof of u:til properties, consider the [ollowing
precedence property:

k [atls A ~atmgg] DO [(~ atmg) U (atls)).

It states that if P, arrived at ¢5 before P; arrived at any location in {m4, m5, mg} then Py will
be admitted first to its eritical section. To prove this we only have to consider the subdiagram
consisting of nodes 0 to 7. Certainly,

[ates A ~atmy6] D [R;VRgV RsV R4V Ryl

Therefore this is an admissible diagram in the sense that condition IJ1 is satisfied. It establishes

that atlg will eventually be realized and all the intermediate states are covered by VZ=1 R; which

implies ~ atmg. |

Ezample C (The Dekker program (DK) - a shared variable solution of the mutual exclusion
problem): '

t:=1, yr:=y3:=F

£o : noncritical section 1 mo : noncritical section 2
L: y1:=T my: ya:=T
L3: tfys=F thengotoly mg: ify, = F then go to my
L3: ift=1thengo toly m3: ift =2 then go tom;
by: :=F my: y3:=F
Ly : loopuntilt =1 mg: loop untilt =2
Lg: gotol mg: go tom,
&7 : critical section 1 mg : critical section 2
t:=2 t:=1
ta YL = F mg: Y2 .= F
Ly: gotoly mg: gotomp
-P - -P; -
' 14
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The variable y, in process I’ (and yg in I’ respectively) is set to 7" at ¢ to signal the intention
of P; to enter its critical scction at £7. Next /7y tests at £; whether 5 has any interest in entering
its own critical scction. This is tested by checking if yo = T. If y; = F, P, proceeds immediately
to its critical section. If yo = T we have a competition belween the two processes on the access
right to their critical sections. This competition is resolved by using the variable t (Lurn) that has
the value 1 il in case of conflict P, has the higher priority and Lhe value 2 il P2 has the higher
priority. If I’ finds that ¢ = | it knows it is its turn Lo insist and it lcaves y; on and just loops
between &; and £3 waiting for y2 to drop to F. If it finds that ¢ = 2 it rcalizes it should yield to
P> and consequently it turns y; off and cnlers a waiting loop at 5, waiting for £ Lo change to 1.
As soon as P, cxits its critical section it will resct t to 1 so P; will not be waiting forever. Once ¢
has been detected to be 1, P sets y; to T and returns to the active competition at £5.

For the DK program we wish to show:
m atl; DO Qatly.

In Figure 2 we present a diagram proof of this property. In constructing the proof we made use of
some invariants that are easily derivable, namely:

B (1n=T) = (atle.4 V atlyg)
B (y2=T)

(atmgo.q4 V atmgg)

= (atls. 6 A t=2) D atmy.. 7.

For example, we used the last invariant in order to decide that at node 23 the P, successors
to states in which at4 A (t = 2) may be anywhere but at mg, mg or my.

Again we may use the extension of the method in order to prove some precedence properties
of this program. First we can show:

[ [atlglg A (t= 1) A ~atm7] o) [(~ atm7)U(atl1)].

This is established by considering the subdiagram formed out of nodes ng to nyp. It ensures that
once I’ isin €33 with ¢t = 1, it will precede /% in getling to the critical section. An alinost trivial
observation is that

B atmg D [(t = 1) U (atty)].

[n analyzing the amount of overtaking by which [% can precede P in entering the critical
scction we find the following:

Once P; is in ¢&; it will eventually get to £3. If currently ¢ = 1, then the next process to enter
its critical section is P;. Otherwise, in the worst case I’} proceeds from €2 to €5. I; cannot enter
its critical section more than once without sectling ¢t to 1. Once t = 1, I’ returns lo &2 cnsuring
its priority on the entrance rights to the critical section. A certain amount of overtaking, te., Pa
entering ils critical section several times belore Py, may take place during the transition of /) from
5 to l3. 1
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PROGRAMS WITI SEMAPIIORES - FAIR COMPUTATIONS

Next we will consider programs with semaphore instructions. For such programs the classes ‘J
of just and lair computations do not coincide and we have to go back to consider the more general .::2
concept of fair computations. Sincc-always #(P) C J(P), any properly that has been proved =
correct by method J certainly holds for all fair computations. Tlowever, the completeness of kR
method J breaks down in the case of programs with semaphores; we are not always guaranteced __:
that method J is applicable. 3

Hence, we propose a more general method for establishing eventuality properties under fasr o
computations: ' -]
Proof Method F : =

il
o

For proving eventualities of the form ¢ D O, under all fair computations of a
program P, find a state predicate @, a well-founded structure (W, > ), a convergence
function u: S — W and a helpfulness function h: § — {1, ..., m} such that:

Fi1. w o D> (¥VQ)

F2. F(P—{P}) B [Q(s) A h(s) =k > O[% V (gi(s)  ¢))]

[ ]

fork=1,...,m

F3. ® [Q(s) A #'€gis)] 2 () v () A (u(s) = u(s))]

fori=1,...,m
F4. m [Q(?) A 8 Egnwy(s)l D [B(s) Vv (u(s) > u(s))]

F5. m [Q(s) A &' €gi(s) A (u(s) =u(s))] D [¥(s") Vv (h(s) = h(s'))]

fort=1,...,m.

Then we may conclude that
F(P)E o D O9.
A stronger conclusion is:

FP)E © O (QUY)

The requirement imposed by F2 is that under all fair computations of P — {P;}, i.e., the
program consisting of all processes excluding P, if @(s) holds and the helplul process is & then
eventually cither 9 will be realized or gx becomes enabled.

The difference between method I' and method J is in the sccond requirement F2. While
J2 requires that the helpful process is enabled now, F'2 only assures that it will be eventually
enabled. The apparent disadvantage of F'2 in comparison with J2 is that while J2 (and all the
other requirements) are static, requiring only classical reasoning for their cstablishment, I°2 is a
temporal requirement, having the same form as the conclusion we sct out to prove: ¢ D O 9. Two
obvious questions arisc: how do we prove F'2, and is there a danger of circular rcasoning?

The answer to both questions lies in the prefix to the B sign. Since our goal predicate in /2 is
gx(8) # ¢ which cxpresses the fact that P is cnabled, we may omit from our considerations any
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.........
.........................

.........
CaNC IR

...............
...............



action of P, because such an action may be taken only when I% is enabled, t.e., from a goal state.
Thus we can consider fair computalions in which all the processes but /% participate and show

. that they eventually get to a state in which Py is ecnabled. Consequently, we can study a simpler
program with one process less. The answer to the question of how to verify clause F'2 is therefore
recursively by method F, but applicd to a simpler program in which Py is omitted.

To justify method F' consider a fair computation:

P P;
g: 89 —> 8 —> 82 ...,

.
DD RIS, J WO ] LRI

o'

such that o(sg) is true and 9 is never realized. By F1 and F'3, @(s;) must be true for every s; i\ the
sequence. By F'2 the sequence must be infinite, since it implies that either already gi(s:) 7 ¢ and
the sequence cannot stop there, or that there exists a future state s; for which ¥ V (gk(35) # ).
Consequently s; cannot be terminal. By F'3 the sequence of values u(s1), u(s2), ... satisfies
u(s1) > u(s2) > ... and by being well-founded it must eveniually stabilize, let us say at s,, t.e.,

u(s,) = u(8,41) = ....
From F5 this implies a constant value of the h function as well, t.e.,

hi(s,) = h(8e41)= ... = k.

Since the u value is constant beyond s,, Pr by /4 could not have been activated. Thus the
suffix sequence

8ry Brgly .-

is a fair computation of P — {Px}. By F2, P must be enabled somewhere in it. By considering
higher suffixes we can establish that g is enabled an infinitc number of times but ncver activated.
Thus ¢ must be unfair. |

In [LI’S] it is proved that method F is complete for proving eventuality propertics lor the class
of all fair computalions of a program.

AN INDEXING METHOD FOR FAIR COMPUTATIONS

Similarly to the case of just computalions we can present a well-founded indexing variation of
the principle proposed above.
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'\~ Proof Method IF:

For proving eventualities of the form ¢ D O, under all fair computations of a
program P, find a well-founded structure (V, >), an indexed family of predicates
R, = R,(s), v € V, and a decrease function § : V. — {1, ..., m} such that

IF1. ®m o D [ V Jv(veE V)R]

IF2. F(P—{Ps)})F Ru(s) O O V (gs)(s) # ¢)]

IF3. [Ru(s) A & €gi(s)) D [¥(s') vV Fu(u < v).R,(4')] fori=1,...,m

IF4. [Ry(s) A &' € gsw)(s)] D [#(¢) V Fulu < v).Ru(s)].

Then we may conclude that

FIP)E ¢ DO O,

A stronger conclusion is:

F(P)E oo (@v.R)UY.

Similarly to the previous case we can establish the equivalence between this method and the
one based on convergence functions. This variation lends itsell easily to a diagram representation
in the finite state case.

We will proceed to illustrate the application of method # to proofs of eventuality properties

of programs with semaphores. ;

Ezample D (Program CP — consumer-producer): ;

b:=4, s8:=1, ¢f: =0, ce:=N __i

lo : compute y, mg : request(cf) ”

£y : request(ce) my : request(s) 8

L3 : request(s) mg: Y3 := head(b)

L3: t:=b-y mg: ty := tail(h) .

L b:=¢ : my: b= 1y ..‘

45 : release(s) ms : release(s) B

lg : release(cf) mg : release(ce) _:

L7 : go tod, my : compute using yg 3

mg: go tomyg .‘

-1

—P;: Producer — —Py: Consumer — i:j

The producer P; computes at £y a value inlo y; without modifying any other shared program 1}

variables. It then adds y; to the end of the buffer 5. The consumer P; removes the first clement R
of the bufler into y; and then uses Lhis value for its own purposes (at m7) without modifying any

other shared program variable. The maximal capacity of the buffer bis N > 0. 2

R

:

IR |



...........
....................

In order to ensure the corrcet synchronization between the processes we use three semaphore

variables: The variable s cnsures that the accesses to the buffer are protected and provides exclusion

between the critical scctions ¢35 and mg, 5. The variable ce (“count of empties”) counts the number )
of lree available slots in the buffer b. It protects b from overflowing. The variable ¢f (“count of

fulls”) counts how many items the bufler currently holds. It ensures that the consumer does not

attempt to remove an item from an empty buffer.

@
Here we wish to show that

B atly DO Catly.

We start by presenting a top-level diagram proof:
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Figure 3. e

This diagram proof is certainly trivial. Everywhere, P; is the heclpful process and leads
immediately to the next step. However, we now have to cstablish clause 7772 in method IF. This e
calls for the consideration of fair computations of P — {I’;} = FP;. We thus have to conduct two ‘:'_'»f:
subproofs: A

F(P) ¢ atly D Ofce > 0) NS
F(P2) F atly D O(s > 0). o
The first statement ensures that if P, is al £;, P, will eventually cause ce to become positive which :',:
is the enabling condition for P, to be activated at £,. Similarly, in the sccond statement Pp will -
eventually cause s to become positive, making P; enabled at £3. TFor both statements we will -
present diagram proofs. a

Consider first the diagram proof for Lhe até; case:

20
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8:mp,cf>0—o 7. mg,ct>0 6. mg,cf>0}—{5.m,,5>0 ~|

;‘ >l 4. M2 |—» 3.m3 |—» 2. mg |—» 1:“'\5 ll o me |—» W:ce>0

Figure 4.

In the construction of this diagram we use some invariants which are easy to derive. For
example, we used -
.‘:)‘

atls s +atmg g+s8=1 .J

in order to derive that being at ¢; and at m; implies 8 > 0. In an expression such as the above
we arithmetize propositions by intcrpreting false as 0 and true as 1. As another invariant we use

!I‘J»A'"‘

"¢
‘{A’l“

cf +ce+ atl3 ¢ +atm; g =N -

in order to deduce that being at ¢, and at my g ¢ implies that cither ce > Q0 or c¢f > 0.

The diagram proof for £; is even simpler:

3:m2 - 21m3 > 1.fﬂ4 Olms ——.W:s>o

Figure 5.
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:: Ezample E (Program BC  a distributed computation of the binomial coellicient): :i‘:
. yi:=n, y3:=<0, ya:=1, ygi=1 i
. . ]
oy to: ify. = (n—k)then go to !, mo: ifys = k then go tom, -
. - o
s & : request(y,) m: Y=y +1 od
.t &L: ty:=y3-» mg: loopuntily, +y2 < n :::
L3: y3:=1# m3: request(yy) ":
,: Ly : release(y,) my: t3:=ys/ys
&: =y -1 ' mg: y3:=1 '
'}. Lg: gotoly mg : release(y,) b
b L : halt _mg: gotomg i:“
. m,: halt o
: = —P, - -P; -
2 !
= This program computes the binomial coefficient (',:) for integers n and k such that 0 < k < n. -
Based on the formula i
ny_ n-(n-1)....-(n-k+1) B
k) 1.2- ... -k .
'.32 process I? successively multiplies y3 Sy n,(n—1), ..., while P; successivcly dividesy3 by 1,2, .... :
= In order for the division at m4 to come out evenly, we divide y3 by y; only when at least y; factors

have been multiplied into y3 by P;. The waiting loop at mg ensures this.

_',;: Without loss of generality we can relabel the instructions in the program, as follows:
< .
:E Program BC* - A relabelled version of the Binomial Coefficient Program:
ni=mn, y2:=0, y3:=1, yg:i=1
-_?: & : ifys = (n—k)thengo to ¢, m3: ifyy = k then go to m,
; lg : request(yy) ma: yi=ys+1
e &: =y mg: loopuntily, +y2 <n
. G: ya:=t my : request(y,) ll
l3: release(y,) - my: ty:=y3/ys ;
[
e L: pi=y-1 mg: y3:i=1lg -
: lg: gotoly my : _ relcase(yq) -
- £, : halt my: go tomy [ ]
my : halt o
:‘:- -P, - -P; - 3
" ) Here we wish to prove: : q
: R
N ® [at{tr,m3} A (v1,v2,93,00) = (»,0,1,1)] O Oat{t;,m,}. 5
> : 22 g
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We apply method F with the following:

Q: [atly.5 + atms g1 +y4 = 1]
Al((n— k) + att3.6)< y1 < 1]
A0 < yz < (k- atmy)] |
Alatty D (y1 =n—k)

(W’ >): (N X N1 >le:l:)
the lexicographically ordered domain of pairs of nonnecgative integers

u(ls,mj;v,v2): (i + k—y2, i +7)
hix,7): if atl, then P else Py

Obviously the label sequence was designed in such a way that cvery step that moves to the next
instruction will necessarily decrement u. This is so because the label sequence is always decreasing
except for the instructions which decrement y; and increment y2. Changes in the y’s have been
given the highest priority in the lexicographical ordering.

There are only two situations to be checked. First, when Py is at £, and P; is at mg we have
to show that the next step indeed decrements u. This is so because in such a situation we are
assured by @ that both ¥ < k and y; = n—k hold, leading to y; + y2 < n, which means that the
next step leads to mg. Another point is to show that being at £g guarantees that eventually y4 will
become positive, by the actions of P, alone. This is easily established by the following diagram,
supported by Q.

2. My 1Zm3 > oO. Mg ———.\P:Y4>o

Figure 6.

CONCLUDING REMARKS

When compared with the chain reasoning approach, the convergence function approach ap-
pears to provide a more concisc representalion of a finished prool of an eventuality property.
However it may at times reveal less intuitive insight into the reasons the program is correct and
certainly offers very little guidance for the design of correct programs. According to whether one
is interested in a post analysis or a proofl-guided synthesis of programs, one approach should be
preferred to the other.

The methods described here extend and elaborate the methods for proving convergence sug-
gested in [LI’S]. 1t is possible Lo prove completeness of the methods proposcd here by an appropriate
extension of Lhe complcteness proof presented in [LIS).
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Closcly rclated approaches but concentrating on nondelerministic mthcr than concurrent

programs are described in (AO} and {GFMR)].
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